

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.299

MULTIVARIATE ANALYSIS OF EARLY SEEDLING VIGOUR AND ITS COMPONENT TRAITS IN A SUBSET OF RICE (ORYZA SATIVA L.) 3K PANEL

S.P. Prem Sagar^{1,2*}, J.R. Diwan^{1,6}, C. Gireesh^{2,3}, B.V. Tembhurne¹, K. Mahantashivayogayya⁵, T.C. Suma⁴ and Saroja, N. Rao⁷

¹Genetics and Plant Breeding, University of Agricultural Sciences, Raichur, Karnataka, India.
 ²ICAR-National Institute of Rice Research, Rajendranagar, Hyderabad, India.
 ³ICAR- National Institute of Seed Science and Technology, Regional Station, GKVK, Bengaluru, India
 ⁴Department of Crop Physiology, University of Agricultural Sciences, Raichur, Karnataka, India
 ⁵Genetics and Plant Breeding, Agricultural Research Station, University of Agricultural Sciences, Mugad, Dharwad, Karnataka, India

⁶Agricultural Research Station, University of Agricultural Sciences, Gangavtahi, Raichur, Karnataka, India ⁷Department of Biochemistry, PRFQAL, University of Agricultural Sciences, Raichur, Karnataka, India *Corresponding author Email: nspremsagar@gmail.com (Date of Receiving-03-02-2025; Date of Acceptance-10-04-2025)

Early seedling vigour is a critical trait in direct-seeded rice systems, influencing crop establishment, weed competitiveness and yield potential. This study evaluated 168 diverse accessions from the 3K rice genome panel for vigour related traits using the paper towel method. Phenotypic assessments at 7th day and 15th day post-germination included germination percentage, seedling length, dry weight and seedling vigour indices. Descriptive statistics revealed substantial variability among accessions, with germination efficiency exceeding 97% in most cases. Correlation analysis indicated strong interdependence among vigour component traits, particularly between seedling length and vigour indices. Principal component analysis identified two major dimensions of variation, elongation-based vigour and biomass accumulation. PC1, explaining 72.55% of the variance, was primarily associated with seedling length and vigour indices, while PC2 (14.27% variance) highlighted dry matter accumulation as a distinct growth strategy. These findings provide valuable insights into genetic variation in seedling vigour and offer a basis for selecting high-performing genotypes for DSR breeding programs.

Key words: Early seedling vigour, Oryza sativa L., Multivariate analysis.

Introduction

Rice (*Oryza sativa* L.) is a staple cereal crop and a primary source of carbohydrates across developing Asian countries, contributing approximately 23% of global caloric intake (Chauhan and Abugho, 2013; Mahender *et al.*, 2015). It plays a crucial role in global food security, supporting the livelihoods of nearly 3.5 billion people (Anandan *et al.*, 2016). Traditionally cultivated in semiaquatic environments through puddled transplanting, rice production now faces multiple challenges, including depleting natural resources, rising labour shortages,

shrinking arable land, increasing input costs and changing climatic conditions (Kahani and Hittalmani, 2015). These constraints necessitate a shift from conventional transplanting to direct-seeded rice (DSR), a waterefficient and cost-effective alternative that eliminates the need for puddling while ensuring moisture retention throughout the growing period (Zhang *et al.*, 2005). To overcome this, an alternative strategy is to go for direct seeded rice (DSR). DSR had many advantages and currently a technique in demand across the country. The success of DSR largely depends on major complex traits

such as early seedling vigour (ESV), weed competitiveness, lodging tolerance, nutrient uptake ability and yield. Among these, ESV is one such imperative trait that promotes rapid and uniform emergence, particularly under moisture-limiting conditions. Improving ESV not only enhances crop establishment and yield potential but also strengthens resilience against climatic stresses and biotic constraints (Fischer et al., 2001; Gibson et al., 2003; Zhao et al., 2006). However, breeding for enhanced seedling vigour remains a significant challenge due to the complexity of its genetic control and the difficulty in precise measurement (Jiang et al., 2004). Understanding genetic variation within rice germplasm is essential to dissect the genetic basis of ESV and facilitate the development of vigorous, high-yielding rice varieties suitable for DSR systems. To achieve this, multivariate statistical tools such as trait correlation to establish the component traits and principal component analysis (PCA) to identify the divergence and trait contributions is essential. PCA simplifies complex datasets by reducing dimensionality while retaining most of the variability, allowing breeders to pinpoint the most influential traits in seedling establishment. Identifying principal components associated with ESV enables breeders to select superior genotypes with multiple desirable traits, ultimately improving crop establishment and yield stability in DSR systems. With this background, we aimed to ascertain the key traits that determine the vigour and to asses the potential of Indian subset 3K rice genome panel for seedling vigour.

Material and Methods

Experimental material and methodology

A total of 168 diverse accessions from the 3K rice genome panel were evaluated for early seedling vigour (ESV) and associated traits during 2023-24 in mid seasons of *Kharif* and *Rabi* (Table 1) at ICAR- Indian Institute of Rice Research, Hyderabad, India. Standardized phenotyping procedures outlined by Standard Evaluation System for Rice (SES) provided by IRRI, Philippines were employed to ensure accuracy and reproducibility (Table 1).

Phenotyping for early seedling vigour using the paper towel method

In order to conduct vigour test using paper towel method, the procedure outlined by Zhang *et al.*, (2005) was duly employed. Uniform, well-filled grains were selected and residual dormancy was mitigated by subjecting seeds to 50°C temperature for five days. Surface sterilization was performed using 0.6% sodium hypochlorite for 15 minutes, followed by three rinses with sterile distilled water to eliminate chemical residues. Pregermination was induced by soaking the sterilized seeds in sterile distilled water at 30°C for 36 hours. The pregerminated seeds were then placed on moistened paper towels, which were carefully rolled to maintain uniform hydration. The rolls were secured at both ends and incubated in a growth chamber at 18°C in complete darkness. This controlled environment facilitated synchronized seedling development. At 7- and 15-days post-inoculation, representative seedlings were randomly selected for phenotypic assessment. This experiment was repeated twice in at different intervals to ensure the efficacy and accuracy. The phenotype data on vigour component traits and calculation of vigour index was done using standard procedures. Germination percentage was determined by dividing the total number of seeds germinated on the 7th day of the experiment by the total number of seeds initially placed for germination. This ratio was then expressed as a percentage.

Germination Percentage (%) =
$$\frac{\text{Total number of seeds germinated}}{\text{Total number of seeds kept for germination}} \times 100$$

Later on, seedling length was measured from the tip of the longest leaf to the root tip. Five normal and random seedlings per accession were selected and their individual lengths were recorded. The final seedling length was expressed as the average of these measurements. To determine biomass accumulation, five seedlings per accession were oven-dried at 80°C for 48 hours. The dried seedlings were then weighed and the average dry weight was recorded in milligrams at 7th and 15th day. Finally, seedling vigour indices were calculated following the formula given by Abdul Baki and Anderson (1973) to quantify early seedling performance at 7th and 15th day intervals.

Seedling Vigour Index I = Germination Percentage \times Seedling Length (cm)

Seedling Vigour Index II = Germination Percentage × Total Dry Wegiht (mg)

Statistical Analysis

The perusal of the thorough data obtained was duly subjected to statistical analysis such as descriptive statistics, correlation studies and principal component analysis. All the analysis was performed using a recently developed R based package "GRAPES" developed by Gopinath *et al.*, (2021).

Results and Discussion

The analysis of seedling vigour traits across the evaluated accessions revealed substantial variability in germination efficiency, seedling growth, biomass accumulation and overall vigour indices. Descriptive

S.No. Germplasm ID IRG ID S.No. Germplasm ID IRG ID S.No. IRG ID				~			~	~			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S. No.	Germplasm ID	IRGID	S. No.	Germplasm ID	IRGID	S. No.	Germplasm ID	IRGID	S. No.	IRGID
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Gl	3K-126	43	G43	IRG092	85	G85	IRG164	127	IRG240
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	G2	3K-130	44	G44	IRG093	86	G86	IRG166	128	IRG241
4 G4 3K-328 46 G46 IRG096 88 G88 IRG170 130 IRG244 5 G5 3K-362 47 G47 IRG098 89 G89 IRG171 131 IRG245 6 G6 3K-423 48 G48 IRG101 91 G91 IRG171 132 IRG251 7 G7 3K-631 49 G49 IRG101 91 G91 IRG175 133 IRG251 8 G8 IRG033 50 G50 IRG102 92 G92 IRG178 134 IRG252 9 G9 IRG036 51 C51 IRG105 94 G94 IRG180 135 IRG253 10 G10 IRC038 52 G52 IRG106 95 G95 IRG184 137 IRG273 12 G12 IRG040 54 C54 IRG114 97 G97 IRG189 139 IRG281	3	G	3K-273	45	G45	IRG094	87	G87	IRG168	129	IRG243
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	G4	3K-328	46	G46	IRG096	88	G88	IRG170	130	IRG244
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	C5	3K-362	47	G47	IRG098	89	G89	IRG171	131	IRG245
7 G7 3K-631 49 G49 IRG101 91 G91 IRG175 133 IRG251 8 G8 IRG033 50 G50 IRG102 92 G92 IRG178 134 IRG252 9 G9 IRG036 51 G51 IRG104 93 G93 IRG180 135 IRG253 10 G10 IRG038 52 G52 IRG105 94 G94 IRG181 136 IRG255 11 G11 IRG039 53 G53 IRG106 95 G95 IRG184 137 IRG273 12 G12 IRG040 54 G54 IRG112 96 G96 IRG187 138 IRG276 13 G13 IRG043 56 G55 IRG114 97 G97 IRG189 139 IRG281 14 G14 IRG045 57 G57 IRG116 99 G99 IRG191 141	6	C6	3K-423	48	G48	IRG100	90	G90	IRG172	132	IRG250
8 G8 IRG033 50 G60 IRG102 92 G92 IRG178 134 IRG252 9 G9 IRG036 51 G51 IRG104 93 G93 IRG180 135 IRG253 10 G10 IRG038 52 G52 IRG105 94 G94 IRG181 136 IRG255 11 G11 IRG039 53 G53 IRG106 95 G95 IRG184 137 IRG273 12 G12 IRG040 54 G54 IRG112 96 G96 IRG187 138 IRG276 13 G13 IRG041 55 G55 IRG114 97 G97 IRG189 139 IRG285 14 G14 IRG043 56 G56 IRG110 99 G99 IRG191 141 IRG289 15 G15 IRG045 57 G57 IRG120 100 G100 IRG191 142	7	G7	3K-631	49	G49	IRG101	91	G91	IRG175	133	IRG251
9 G9 IRG036 51 G51 IRG104 93 G93 IRG180 135 IRG253 10 G10 IRG038 52 G52 IRG105 94 G94 IRG181 136 IRG255 11 G11 IRG039 53 G53 IRG106 95 G95 IRG184 137 IRG273 12 G12 IRG040 54 G54 IRG112 96 G96 IRG187 138 IRG276 13 G13 IRG041 55 G55 IRG114 97 G97 IRG189 139 IRG281 14 G14 IRG043 56 G56 IRG116 99 G98 IRG190 140 IRG285 15 G15 IRG046 58 G58 IRG120 100 G100 IRG193 142 IRG292 17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143	8	C8	IRG033	50	G50	IRG102	92	G92	IRG178	134	IRG252
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	C9	IRG036	51	G51	IRG104	93	G93	IRG180	135	IRG253
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	G10	IRG038	52	G52	IRG105	94	G94	IRG181	136	IRG255
12 G12 IRG040 54 G54 IRG112 96 G96 IRG187 138 IRG276 13 G13 IRG041 55 G55 IRG114 97 G97 IRG189 139 IRG281 14 G14 IRG043 56 G56 IRG115 98 G98 IRG190 140 IRG285 15 G15 IRG045 57 G57 IRG116 99 G99 IRG191 141 IRG289 16 G16 IRG046 58 G58 IRG120 100 G100 IRG193 142 IRG292 17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143 IRG293 18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG299 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 <td>11</td> <td>G11</td> <td>IRG039</td> <td>53</td> <td>G53</td> <td>IRG106</td> <td>95</td> <td>G95</td> <td>IRG184</td> <td>137</td> <td>IRG273</td>	11	G11	IRG039	53	G53	IRG106	95	G95	IRG184	137	IRG273
13 G13 IRG041 55 G55 IRG114 97 G97 IRG189 139 IRG281 14 G14 IRG043 56 G56 IRG115 98 G98 IRG190 140 IRG285 15 G15 IRG045 57 G57 IRG116 99 G99 IRG191 141 IRG289 16 G16 IRG046 58 G58 IRG120 100 G100 IRG193 142 IRG292 17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143 IRG293 18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG299 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG203 147 </td <td>12</td> <td>G12</td> <td>IRG040</td> <td>54</td> <td>G54</td> <td>IRG112</td> <td>96</td> <td>G96</td> <td>IRG187</td> <td>138</td> <td>IRG276</td>	12	G12	IRG040	54	G54	IRG112	96	G96	IRG187	138	IRG276
14 G14 IRG043 56 G56 IRG115 98 G98 IRG190 140 IRG285 15 G15 IRG045 57 G57 IRG116 99 G99 IRG191 141 IRG289 16 G16 IRG046 58 G58 IRG120 100 G100 IRG193 142 IRG292 17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143 IRG293 18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG293 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147	13	G13	IRG041	55	G55	IRG114	97	G97	IRG189	139	IRG281
15 G15 IRG045 57 G57 IRG116 99 G99 IRG191 141 IRG289 16 G16 IRG046 58 G58 IRG120 100 G100 IRG193 142 IRG292 17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143 IRG293 18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG299 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG051 65 G65 IRG139 107 G107 IRG205 1	14	G14	IRG043	56	G56	IRG115	98	G98	IRG190	140	IRG285
16 G16 IRG046 58 G58 IRG120 100 G100 IRG193 142 IRG292 17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143 IRG293 18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG299 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG052 64 G64 IRG138 106 G106 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G109 IRG210 <td< td=""><td>15</td><td>G15</td><td>IRG045</td><td>57</td><td>G57</td><td>IRG116</td><td>99</td><td>G99</td><td>IRG191</td><td>141</td><td>IRG289</td></td<>	15	G15	IRG045	57	G57	IRG116	99	G99	IRG191	141	IRG289
17 G17 IRG047 59 G59 IRG122 101 G101 IRG194 143 IRG293 18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG299 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG052 64 G64 IRG138 106 G106 IRG204 148 IRG306 23 G23 IRG053 65 G65 IRG140 108 G108 IRG205 149 IRG308 24 G24 IRG060 67 G67 IRG141 109 G109 IRG210 <td< td=""><td>16</td><td>G16</td><td>IRG046</td><td>58</td><td>G58</td><td>IRG120</td><td>100</td><td>G100</td><td>IRG193</td><td>142</td><td>IRG292</td></td<>	16	G16	IRG046	58	G58	IRG120	100	G100	IRG193	142	IRG292
18 G18 IRG048 60 G60 IRG124 102 G102 IRG197 144 IRG299 19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG052 64 G64 IRG138 106 G106 IRG204 148 IRG306 23 G23 IRG053 65 G65 IRG139 107 G107 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG310 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 <td< td=""><td>17</td><td>G17</td><td>IRG047</td><td>59</td><td>G59</td><td>IRG122</td><td>101</td><td>G101</td><td>IRG194</td><td>143</td><td>IRG293</td></td<>	17	G17	IRG047	59	G59	IRG122	101	G101	IRG194	143	IRG293
19 G19 IRG049 61 G61 IRG129 103 G103 IRG198 145 IRG301 20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG052 64 G64 IRG138 106 G106 IRG204 148 IRG306 23 G23 IRG053 65 G65 IRG139 107 G107 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG309 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 <td< td=""><td>18</td><td>G18</td><td>IRG048</td><td>60</td><td>G60</td><td>IRG124</td><td>102</td><td>G102</td><td>IRG197</td><td>144</td><td>IRG299</td></td<>	18	G18	IRG048	60	G60	IRG124	102	G102	IRG197	144	IRG299
20 G20 IRG050 62 G62 IRG133 104 G104 IRG201 146 IRG303 21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG052 64 G64 IRG138 106 G106 IRG204 148 IRG306 23 G23 IRG053 65 G65 IRG139 107 G107 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG309 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 <td< td=""><td>19</td><td>G19</td><td>IRG049</td><td>61</td><td>G61</td><td>IRG129</td><td>103</td><td>G103</td><td>IRG198</td><td>145</td><td>IRG301</td></td<>	19	G19	IRG049	61	G61	IRG129	103	G103	IRG198	145	IRG301
21 G21 IRG051 63 G63 IRG135 105 G105 IRG203 147 IRG305 22 G22 IRG052 64 G64 IRG138 106 G106 IRG204 148 IRG306 23 G23 IRG053 65 G65 IRG139 107 G107 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG309 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	20	G20	IRG050	62	G62	IRG133	104	G104	IRG201	146	IRG303
22 G22 IRG052 64 G64 IRG138 106 G106 IRG204 148 IRG306 23 G23 IRG053 65 G65 IRG139 107 G107 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG309 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	21	G21	IRG051	63	G63	IRG135	105	G105	IRG203	147	IRG305
23 G23 IRG053 65 G65 IRG139 107 G107 IRG205 149 IRG308 24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG309 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	22	G22	IRG052	64	G64	IRG138	106	G106	IRG204	148	IRG306
24 G24 IRG056 66 G66 IRG140 108 G108 IRG206 150 IRG309 25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	23	G23	IRG053	65	G65	IRG139	107	G107	IRG205	149	IRG308
25 G25 IRG060 67 G67 IRG141 109 G109 IRG210 151 IRG310 26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	24	G24	IRG056	66	G66	IRG140	108	G108	IRG206	150	IRG309
26 G26 IRG061 68 G68 IRG142 110 G110 IRG211 152 IRG312 27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	25	G25	IRG060	67	G67	IRG141	109	G109	IRG210	151	IRG310
27 G27 IRG064 69 G69 IRG143 111 G111 IRG212 153 IRG314	26	G26	IRG061	68	G68	IRG142	110	G110	IRG211	152	IRG312
	27	G27	IRG064	69	G69	IRG143	111	G111	IRG212	153	IRG314
28 G28 IRG067 70 G70 IRG145 112 G112 IRG213 154 IRG317	28	G28	IRG067	70	G70	IRG145	112	G112	IRG213	154	IRG317
29 G29 IRG068 71 G71 IRG146 113 G113 IRG214 155 IRG319	29	G29	IRG068	71	G71	IRG146	113	G113	IRG214	155	IRG319
30 G30 IRG069 72 G72 IRG147 114 G114 IRG215 156 IRG322	30	G30	IRG069	72	G72	IRG147	114	G114	IRG215	156	IRG322
31 G31 IRG070 73 G73 IRG148 115 G115 IRG216 157 IRG323	31	G31	IRG070	73	G73	IRG148	115	G115	IRG216	157	IRG323
32 G32 IRG073 74 G74 IRG150 116 G116 IRG217 158 IRG326	32	G32	IRG073	74	G74	IRG150	116	G116	IRG217	158	IRG326
33 G33 IRG075 75 G75 IRG152 117 G117 IRG222 159 IRG328	33	G33	IRG075	75	G75	IRG152	117	G117	IRG222	159	IRG328
34 G34 IRG078 76 G76 IRG153 118 G118 IRG223 160 IRG332	34	G34	IRG078	76	G76	IRG153	118	G118	IRG223	160	IRG332
35 G35 IRG079 77 G77 IRG154 119 G119 IRG224 161 IRG344	35	G35	IRG079	77	G77	IRG154	119	G119	IRG224	161	IRG344
36 G36 IRG081 78 G78 IRG155 120 G120 IRG225 162 IRG348	36	G36	IRG081	78	G78	IRG155	120	G120	IRG225	162	IRG348
37 G37 IRG082 79 G79 IRG156 121 G121 IRG227 163 IRG349	37	G37	IRG082	79	G79	IRG156	121	G121	IRG227	163	IRG349
38 G38 IRG084 80 G80 IRG157 122 G122 IRG234 164 IRG351	38	G38	IRG084	80	G80	IRG157	122	G122	IRG234	164	IRG351
39 G39 IRG086 81 G81 JRG158 123 G123 IRG235 165 IRG353	39	G39	IRG086	81	G81	IRG158	123	G123	IRG235	165	IRG353
40 G40 IRG089 82 G82 IRG160 124 G124 IRG237 166 IRG357	40	G40	IRG089	82	G82	IRG160	124	G124	IRG237	166	IRG357
41 G41 IRG090 83 G83 IRG161 125 G125 IRG238 167 IRG360	41	G41	IRG090	83	<u>G83</u>	IRG161	125	G125	IRG238	167	IRG360
42 G42 IRG091 84 G84 IRG163 126 G126 IRG239 168 IRG375	42	G42	IRG091	84	<u> </u>	IRG163	126	G126	IRG239	168	IRG375

Table 1: Details of 168 germplasm accessions utilized for the study.

statistics provided insights into the extent of variation, while normality assessments highlighted deviations in specific traits. Correlation analysis established interrelationships among measured parameters and principal component analysis (PCA) identified major axes of variation, distinguishing elongation-based vigour from biomass accumulation as two independent dimensions of seedling vigour.

Descriptive statistics

Germination percentage (GP) exhibited a higher

mean value of 97.20% considering all the accessions. Among the 168 accessions considered, 86.30% yielded complete germination. This suggests that, there was uniform germination efficiency attained. Seedling length showed progressive growth over time, with mean values of 21.02 cm at 7th day (SGL_7) and 31.01 cm at 15th day (SGL_15). Biomass-related traits displayed higher variability, particularly at early growth stages, as reflected by the variation for total dry weight at 7th day with a mean of 11.66 mg and 22.74 mg at15th day. This indicated that, there has been accumulation of biomass over the

Variables	Mean	Minimum	Maximum	Standard Deviation	Skewness	Kurtosis		
GP	97.2	70	100	7.34	-2.5	4.99		
SGL_7	31.01	19.12	39.89	3.75	-0.15	0.28		
TDW_7	21.02	11.12	27.5	3.13	-0.45	0.2		
SGL_15	3064.52	1624.17	3988.34	428.29	-0.49	0.51		
TDW_15	2078.69	988.5	2750	354.77	-0.76	0.45		
SVII_7	2244.53	1395.84	2763.34	238.65	-0.65	0.54		
SVIII_7	1142.96	457.83	2626	274.07	1.07	6.38		
SVII_15	22.74	16.68	27.63	1.95	-0.16	0.01		
SVIII_15	11.66	5.48	31.05	2.98	2.5	13.69		
* Note: GP: Germination Percentage, SGL_7: Seedling Length at 7 th Day, TDW_7: Total dry weight at 7 th Day, SVII_7: Seedling Vigour Index -I at 7 th Day, SVII_17: Seedling Vigour Index -II at 7 th Day, SGL_15: Seedling Length at 15 th Day, TDW_15: Total dry weight at								

15th Day, SVII_15: Seedling Vigour Index -I at 15th Day and SVIII_15: Seedling Vigour Index -II at 15th Day

 Table 2:
 Phenotypic descriptive statistics of distinct ESV traits considered for the study.

time interval, which in turn relates to the vigour of the seedlings. Among vigour indices, seedling vigour index-I at 7th day (SVII_7) exhibited a mean of 2078.69. Meanwhile, seedling vigour index-II at 7th day (SVIII_7) displayed a mean of 1142.96. During the second stage i.e., at 15th day, SVII_15 has attained an average of 3064.52 and SVIII_15 had a mean of 2244.53. Considering the complete germination obtained across most of the accessions, it can be inferred that, the increase in vigour indices from 7th day to 15th day is majorly based on the increase in seedling length for index I and dry weight for index II respectively (Table 2).

Germination percentage is a key element of seed quality, early seedling vigour and crop establishment. It plays a crucial role in improving resistance to pests and diseases while minimizing weed competition. In DSR systems, particularly in rainfed lowlands with limited moisture and nutrients, rapid germination and efficient nutrient uptake are vital traits (Yamane et al., 2018). Studies have reported significant variability in germination percentage among rice accessions (Wang et al., 2011; Septiningish et al., 2013; Baltazar et al., 2014). Additionally, Tejaswi (2012) and Suneetha Madhuri (2014) identified QTLs associated with this trait in cultivated rice genotypes. Lower germination percentages in some cases may be linked to seed dormancy, affecting uniform and rapid germination. On the other hand, seedling length is a key trait influencing early seedling vigour in directseeded rice and is widely used as an indicator of vigour (Zhang et al., 2017). Studies have reported significant variability in seedling length among cultivated rice genotypes (Akshaya et al., (2020), Koshle et al., (2020) and Bharamappanavara et al., (2023)). Cordero-Lara et al., (2016) highlighted that seedling length is influenced not only by shoot length (SHL) but also by root length (RL), suggesting that their combined effect determines overall seedling growth. Variability in seedling length across environments may range from low to moderate due to these interactions. Additionally, early-stage slow growth could result from poor germination and low temperatures.

Dang et al., (2014) outlined that, seedling dry weight serves as a crucial index for assessing early seedling vigour, reflecting the efficiency of photosynthesis and nutrient accumulation in the initial growth stages. They emphasized that high total dry weight is a reliable selection criterion for identifying vigorous rice genotypes. Studies on early seedling vigour in rice by Diwan et al., (2013) and Dang et al., (2014) reported significant variability in total dry matter among mapping populations and their parents, highlighting the genetic diversity associated with this trait. Similarly, Tejaswi (2012), Roy and Bhadra (2014) and Suneetha Madhuri (2014) observed substantial variation in cultivated rice genotypes, supporting the importance of seedling dry weight as a key indicator of vigour. Dang et al., (2014) further noted that efficient nutrient accumulation in both the shoot and root is vital for early seedling establishment, as it influences subsequent resource allocation to leaves and overall leaf area development. Barik et al., (2019) suggested that a rapid increase in dry weight by 15th day indicates effective resource partitioning from initial seedling establishment to active vegetative growth.

SVI-I is defined as the product of GP and SGL, is a vital trait that determines a genotype's ability to produce high-quality seedlings by efficiently utilizing resources such as light, moisture and nutrients. This index plays a vital role in ensuring rapid germination and early seedling growth under field conditions. Diwan *et al.*, (2013) reported significant variability for SVI-I in different rice populations, highlighting its importance in early seedling establishment. Similarly, SVI-II, which measures dry matter accumulation in normal seedlings, serves as an indicator of seed vigour and food reserve availability. Sanghmitra *et al.*, (2021) suggested that seeds with higher

Variables	GP	SGL_7	TDW_7	SGL_15	TDW_15	SVII_7	SVIII_7	SVII_15	SVIII_15
GP	1								
SGL_7	0.65**	1							
TDW_7	0.456**	0.59**	1						
SGL_15	0.505**	0.74**	0.39**	1					
TDW_15	0.433**	0.681**	0.334**	0.919**	1				
SVII_7	0.737**	0.991**	0.598**	0.735**	0.674**	1			
SVIII_7	0.593**	0.726**	0.869**	0.514**	0.472**	0.742**	1		
SVII_15	0.664**	0.786**	0.44**	0.978**	0.895**	0.805**	0.58**	1	
SVIII_15	0.68**	0.765**	0.421**	0.907**	0.951**	0.792**	0.581**	0.945**	1
* Note 1: GP: Germination Percentage, SGL 7: Seedling Length at 7 th Day, TDW 7: Total dry weight at 7 th Day, SVII 7: Seedling									

 Table 3:
 Correlation coefficients among and for the ESV and its component traits.

* Note 1: GP: Germination Percentage, SGL_7: Seedling Length at 7th Day, TDW_7: Total dry weight at 7th Day, SVII_7: Seedling Vigour Index -I at 7th Day, SVII_17: Seedling Vigour Index -II at 7th Day, SGL_15: Seedling Length at 15th Day, TDW_15: Total dry weight at 15th Day, SVII_15: Seedling Vigour Index -I at 15th Day and SVIII_15: Seedling Vigour Index -II at 15th Day Note 2: *: Significant at 95% confidence interval and **: Significant at 99% confidence interval

macromolecular reserves exhibit improved dry matter accumulation, leading to better early-stage growth. Addanki *et al.*, (2018) further noted that seedlings with high vigour tend to establish more robust plants, making them more resilient to biotic and abiotic stresses. These inferences can be corroborated to the current study results, where in the increase in dry matter accumulation and seedling length have contributed to the increase in vigour.

Trait distribution and normality assessment

The normality of trait distributions was assessed using Quantile – Quantile Plots (QQ), revealing differences in skewness and kurtosis across traits (Table 2 and Fig. 1). GP followed a near-normal distribution, with a slight negative skew (skewness = -2.50, kurtosis = 4.99), while SGL at 15^{th} day exhibited minimal deviation from normality (skewness = -0.15, kurtosis = 0.28). In contrast,

TDW at 7th day showed substantial deviation from normality, with strong positive skewness (skewness = (2.50) and a heavy-tailed distribution (kurtosis = 13.69), indicating the presence of extreme values. A similar trend was observed for SVI-II at 7th day, which exhibited high kurtosis (6.38), suggesting large variability among accessions in early biomass accumulation. While most traits approximated normal distributions, the presence of outliers and non-normality in specific traits such as TDW_7 and SVIII_7 might suggest the potential influence of genetic variation or environmental factors affecting early seedling growth. Usually, in mapping populations, the distributions tend to be almost normal. However, when germplasm in consideration, there could be potential accessions with higher values or lower values, which could bring the deviation in the distributions. From

Fig. 1: Depiction of Quantile-Quantile plots to represent phenotype normality at 7th and 15th days in ESV traits.

Principal Components	Eigen Value	Percentage of Variance	Cumulative Percentage of Variance				
PC1	6.529	72.547	72.547				
PC2	1.284	14.266	86.813				
PC3	0.585	6.503	93.316				
PC4	0.358	3.981	97.297				
PC5	0.137	1.523	98.82				
PC6	0.099	1.1	99.92				
PC7	0.006	0.072	99.992				
PC8	0	0.004	99.996				
PC9	0	0.004	100				
*Note: PC: Principal Components							

 Table 4:
 Eigen values and percent variance explained by principal components to the divergence.

the figures, it can be inferred that, most of the values are in alignment with the expected line, with only few stretching away.

Correlation analysis among traits

Correlation analysis revealed significant associations among seedling vigour traits, highlighting the interdependence of early growth and vigour indices (Table 3; Fig. 2). A strong positive correlation was observed between SGL at 7th day and 15th day, indicating that early seedling growth is a reliable predictor of later-stage vigour. Similarly, TDW at 15th day exhibited a strong correlation with SVI-II at 15th day, confirming the significant role of biomass accumulation in seedling vigour. Early vigour traits showed strong interdependence, with SVI -I at 7th day and SVI-II at 7th day being highly correlated,

Fig. 2: Depiction of magnitude and direction of correlation among seedling vigour component traits considered in the study.

reflecting their shared reliance on GP and early biomass accumulation. GP exhibited the highest correlation with SVI-I at 7th day, reinforcing its influence on early seedling vigour. In contrast, TDW at 7th day and 15th day showed weaker correlations with GP.

Attainment of positive correlation pertaining considered traits, it can be inferred that, the components traits measured compliment each other and are highly effective in ascertaining early vigour. These above findings indicated a strong positive association among most of the traits, suggesting they might be under common genetic control. Notably, SVI-I and SVI-II exhibited

Fig. 3: A) Scree Plot; B) Trait Contributions and C) Biplots representing contributions of traits and accessions for total divergence

Variables	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	
GP	0.743	0.188	-0.583	0.27	0.013	0.021	0.025	0	
SGL_7	0.911	0.127	-0.088	-0.381	-0.003	0.026	0.022	-0.011	
TDW_7	0.641	0.655	0.318	0.139	0.104	0.172	-0.001	0	
SGL_15	0.891	-0.37	0.163	0.021	0.188	-0.078	0.028	0.006	
TDW_15	0.85	-0.435	0.225	0.055	-0.169	0.073	0.035	0.002	
SVII_7	0.928	0.145	-0.172	-0.294	-0.009	0.028	-0.024	0.013	
SVIII_7	0.777	0.544	0.173	0.079	-0.13	-0.219	0.001	0	
SVII_15	0.941	-0.279	0.008	0.083	0.156	-0.062	-0.035	-0.007	
SVIII_15	0.934	-0.289	-0.011	0.134	-0.144	0.066	-0.04	-0.002	
* Note: GP: Germination Percentage, SGL_7: Seedling Length at 7th Day, TDW_7: Total dry weight at 7th Day, SVII_7: Seedling									

Table 5: Correlation of ESV component traits with the principal components obtained.

* Note: GP: Germination Percentage, SGL_7: Seedling Length at 7th Day, TDW_7: Total dry weight at 7th Day, SVII_7: Seedling Vigour Index -I at 7th Day, SVII_17: Seedling Vigour Index -II at 7th Day, SGL_15: Seedling Length at 15th Day, TDW_15: Total dry weight at 15th Day, SVII_15: Seedling Vigour Index -I at 15th Day and SVIII_15: Seedling Vigour Index -II at 15th Day

significant positive correlations with all component traits. Similar trends were reported by Sangamitra *et al.*, (2021), where GP showed a strong positive correlation with vigour indices and dry weight. Likewise, Padmashree *et al.*, (2022) observed a positive association between germination percentage and vigour indices using the paper towel method, though its relationship with dry weight was minimal.

The consistent pattern of significant positive associations among traits highlights their interconnected nature in rice breeding and genetic improvement programs. Tejaswi (2012) and Addanki *et al.*, (2018) also reported significant positive correlations among key seedling vigour parameters, reinforcing this conclusion. Further, studies by Bordoloi D Sarma (2018), Barik *et al.*, (2019), Jan and Kashyap (2019), Beerelli *et al.*, (2020), Katiyar *et al.* (2019) and Bharamappanavara *et al.*, (2023) have consistently demonstrated the same. These associations suggest that genetic factors influencing one trait may simultaneously affect others, supporting the value of considering multiple traits when assessing seedling vigour in rice.

Principal Component Analysis (PCA)

Principal component analysis was conducted to identify major sources of variation among the seedling vigour traits (Table 4; Fig. 3). The first two principal components (PC1 and PC2) accounted for 86.81% of the total variance, effectively summarizing complex trait interactions into two dominant dimensions. PC1 explained 72.55% of the total variance, primarily influenced by SGL at 7th day, SGL at 15th day, SVI-I at 7th day, SVI-I at 15th day and SVI -II at 15th day. The dominance of these traits in PC1 suggests that elongation-based vigour across growth stages is the primary determinant of variation in seedling vigour. PC2 accounted for 14.27% of the total variance, with major contributions from TDW at 7th day and SVI-II at 7th day, indicating that biomass accumulation represents a secondary but distinct axis of variation.

The contribution of traits to principal components confirmed the differentiation between elongation-based vigour and biomass accumulation. SGL at 7th day (12.70%) and SVI -I at 7th day (13.19%) were the most influential contributors to PC1, followed closely by SGL at 15th day (12.16%) and SVI-II at 15th day (13.35%). The dominance of these traits underlines the importance of seedling elongation across time points in defining overall vigour. In contrast, TDW at 7th day made the highest contribution to PC2 (33.37%), emphasizing the role of early biomass accumulation in explaining additional variation. The biplot of PCA loadings revealed a distinct separation between early-stage and late-stage vigour traits, further supporting the differentiation between elongation-based and biomass-driven vigour dimensions (Fig.). Genotypes positioned at the extreme positive end of PC1, such as G41, G35, G154 and G117, displayed high values for seedling length and vigour indices. Conversely, those on the negative end of PC1 exhibit

Fig. 4: Inter-Correlations among vigour component traits, vigour indices and principal components attained in the study.

lower vigour potential. Along PC2, genotypes diverge based on total dry weight and germination percentage, suggesting that biomass accumulation significantly influenced early seedling performance. The distinct clustering of these genotypes highlights inherent variation in early growth strategies, with some favouring rapid elongation and others highlighting biomass accumulation. This differentiation is critical for selecting suitable accessions for direct-seeded rice systems, where both emergence speed and seedling robustness play crucial roles in establishment and yield potential.

Inter-component correlations provided further insights into the relationships among major axes of variation (Table 5; Fig. 4). A significant correlation was observed between PC1 and PC3, suggesting that vigour shared some variance with later-stage biomass accumulation. Conversely, PC2 and PC4 exhibited weak correlations, indicating that early biomass accumulation follows an independent trajectory distinct from elongation-driven growth. These findings highlight two complementary but independent dimensions of seedling vigour, one driven by seedling length growth and the other by dry matter accumulation. The distinct clustering of traits in PCA confirms that both aspects should be considered in breeding programs aimed at improving early vigour in rice accessions.

The current PCA results align with the findings of Uzair et al., (2022), who analysed 190 rice accessions from the 3K rice genome panel and reported that SGL and grain yield-related traits were the primary contributors to total divergence. Similarly, Anandan et al., (2020) observed a comparable distribution pattern of vigour traits in first and second quadrants, supporting the genetic basis of early seedling growth variation. The PCA-based divergence analysis provides valuable genetic insights into the multivariate distribution of early seedling vigour traits. The clear separation of genotypes along the principal components suggests that specific seedling traits are under strong genetic control, which can be leveraged for selection in breeding programs. Since PC1 captures the maximum variance, the traits contributing to it such as seedling length, seedling vigour indices and total dry weight are likely governed by major effect quantitative trait loci (QTLs).

However, in contrast to our findings, Rudresh *et al.*, (2021) reported that days to 50% flowering (DFF) and days to maturity (DM) were the most influential traits in PC1, whereas seedling vigour traits dominated PC2, indicating differential trait prioritization based on genetic background and environmental conditions. These insights align with previous genomic studies indicating that early

vigour traits in rice are polygenic and exhibit moderate to high heritability. Understanding such genetic divergence is crucial for selecting superior genotypes for directseeded rice (DSR) systems.

Conclusion

This study highlights the genetic diversity available for early seedling vigour among existing rice accessions, emphasizing the role of seedling length and dry matter accumulation as independent yet complementary dimensions of vigour. The strong correlations among vigour indices suggest that selection for early growth traits can significantly enhance crop establishment in DSR systems. The distinct clustering of accessions in PCA highlights inherent variation in seedling growth strategies, offering potential targets for breeding resilient, high-vigour rice varieties. These results provide a foundation for identifying promising genotypes for direct-seeded cultivation, ultimately contributing to improved adaptation and productivity under changing agronomic conditions.

References

- Abdul Baki, A.A and Anderson J.D. (1973). Vigor determination in soybean seed by multiple criteria 1. *Crop Sci.*, **13(6)**, 630-633.
- Addanki, K.R., Balakrishnan D., Yadavalli V.R., Surapaneni M., Mesapogu S., Beerelli K. and Neelamraju S. (2018). Swarna × Oryza nivara introgression lines, A resource for seedling vigour traits in rice. *Plant Genet. Resour.*, 16(1), 1-12.
- Akshaya, M., Thirumurugan T., Chitra S., Nithila S and Jeyaprakash P. (2020). Genetic variability in rice (*Oryza* sativa L.) landraces for seedling vigour traits. *Electron. J. Plant Breed.* **11(01)**, 91-96.
- Anandan, A., Anumalla M., Pradhan S.K. and Ali J. (2016). Population structure, diversity and trait association analysis in rice (*Oryza sativa* L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. *PloS One*, **11(3)**, 0152406.
- Anandan, A., Mahender A., Sah R.P., Bose L.K., Subudhi H., Meher J., Reddy J.N. and Ali J. (2020). Non-destructive phenotyping for early seedling vigor in direct-seeded rice. *Plant Methods*, **16**, 1-18.
- Baltazar, M.D., Ignacio J.C.I., Thomson M.J., Ismail A.M., Mendioro M.S. and Septiningsih E.M. (2014). QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. *Euphytica*, **197**, 251-260.
- Bharamappanavara, M., Madhyavenkatapura A.S., Appaiah M.C., Patil B.S., Vijjeswarapu A., Senguttuvel P., Madhav M.S., Rathod S., Mondal T.K., Ramappa L. and Mathada U.R. (2023). Genetic analysis of early seedling vigour in Oryza glaberrima accessions under laboratory and direct-seeded rice conditions. Cereal Res. Commun., 51(4), 991-1002.

- Barik, J., Kumar V., Lenka S.K. and Panda D. (2019). Genetic potentiality of lowland indigenous indica rice (*Oryza* sativa L.) landraces to anaerobic germination potential. *Plant Physiol. Rep.*, 24, 249-61.
- Beerelli, K., Balakrishnan D. and Neelamraju S. (2020). Variability and correlation of yield traits in BIL \times BIL populations derived from Swarna \times *O. nivara. J. Rice Res.*, **13(1)**, 1-12.
- Bordoloi D, Sarma. (2018). Aerobic versus anaerobic germination performance of selected rice (*Oryza sativa* L.) genotypes with or without submergence tolerance. J. *Exp. Biol. Agric. Sci.*, 6(6), 947-958.
- Chauhan, B.S. and Abugho S.B. (2013). Effect of crop residue on seedling emergence and growth of selected weed species in a sprinkler-irrigated zero-till dry seeded rice system. *Weed. Sci.*, **61**(3), 403-409.
- Cordero-Lara, K.I., Kim H. and Tai T.H. (2016). Identification of seedling vigor associated quantitative trait loci in temperate *japonica* rice. *Plant Breed. Biotech.*, **4(4)**, 426-440.
- Dang, X., Thi T.G.T., Dong G., Wang H., Edzesi W.M. and Hong D. (2014). Genetic diversity and association mapping of seed vigor in rice (*Oryza sativa* L.). *Planta*, 239(1), 1309-1319.
- Diwan, J., Channbyregowda M., Shenoy V., Salimath P. and Bhat R. (2013). Molecular mapping of early vigour related QTLs in rice. *Res. J. Biol.*, **1**(1), 24-30.
- Fischer, A.J., Ramirez H.V., Gibson K.D. and Pinheiro B.D.S. (2001). Competitiveness of semi-dwarf upland rice cultivars against palisadegrass (*Brachiaria brizantha*) and signalgrass (*B. decumbens*). Agron. J., **93**, 967-973.
- Gibson, K.D., Fischer A.J., Foin T.C. and Hill J.E. (2003). Crop traits related to weed suppression in water seeded rice (*Oryza sativa L.*). Weed Sci., **51**, 87-93.
- Jiang, L., Hou M.Y., Ming W.C. and Min W.J. (2004). Quantitative trait loci and epistatic analysis of seed anoxia germinability in rice (*Oryza sativa L.*). *Rice Sci.*, 11, 238-244.
- Kahani, F. and Hittalmani S. (2015). Genetic analysis and traits association in F2 intervarietal populations in rice under aerobic condition. *J. Rice Res.*, **3**(152), 2.
- Katiyar, D., Srivastava K.K., Prakash S., Kumar M., Gupta M. (2019). Study correlation coefficients and path analysis for yield and its component characters in rice (*Oryza sativa* L.). J. Pharmacognosy Phytochem., 8(1), 1783-1787.
- Koshle, R., Sarawgi A.K., Sharma B., Parikh M and Ware S. (2020). Assessment of genetic variability for early seedling vigour, yield and its contributing traits in early duration genotypes of rice under direct seeded condition. J. Pharmacognosy Phytochem., 9(6), 1225-1229.
- Mahender, A., Anandan A. and Pradhan S.K. (2015). Early seedling vigour, an imperative trait for direct-seeded rice, an overview on physio-morphological parameters and molecular markers. *Planta*, **241(5)**, 1027-1050.
- Nusrat Jan and Subhash C Kashyap (2019). Correlation and path analysis in rice (*Oryza sativa* L.) for seed and seed vigour traits. *J Pharmacogn. Phytochem.*, **8**(1), 222-226.
- Padmashree, R., Nakul D.M., Kalyani M.B., Phule A., Honnappa Senguttuvel P., Sheshu Madhav M., Anantha M.S., Balakrishnan D., Gireesh C., Manasa V. and Lokesha

R. (2022). Phenotypic evaluation of seedling vigourrelated traits in a set of rice lines. J. Rice Res., **15**(1), 1-8.

- Pratheesh P. Gopinath, Rajender Parsad, Brigit Joseph and Adarsh V.S. (2021). grapesAgri1: Collection of Shiny Apps for Data Analysis in Agriculture (1.1.0). Zenodo. <u>https://doi.org/10.5281/zenodo.5106216</u>
- Roy, S.K.S. and Bhadra S. (2014). Effect of toxic levels of aluminium on seedling parameters of rice (*Oryza sativa* L.) under hydroponic culture. *Rice Sci.*, **21(4)**, 217-223.
- Rudresh, N.S., Jayamani P., Vijayakumar E., Manonmani S., Gangashetti M., Jeyakumar P. and Latha K.R. (2021). Genetic analysis of rice germplasm suitable for direct and transplanted establishments. *Electron. J. Plant Breed.*, **12(4)**, 1148-1156.
- Sanghamitra, P., Nanda N., Barik S.R., Sahoo S., Pandit E., Bastia R., Bagchi T.B. and Pradhan S.K. (2021). Genetic structure and molecular markers-trait association for physiological traits related to seed vigour in rice. *Plant Gene*, 28(1), e100338.
- Septiningsih, E.M., Ignacio J.C.I., Sendon P.M.D., Sanchez D. L., Ismail A.M. and Mackill D.J. (2013). QTL mapping and confirmation for tolerance pf anaerobic conditions during germination derived from the rice landrace. *Theor. Appl. Genet.*, **126**, 1357-1366.
- Suneetha Madhuri M. (2014). Identification of QTLs for seedling root traits in rice (*Oryza sativa* L.) genotypes. *M. Sc. Thesis*, Acharya N. G. Ranga Agric. Univ. Hyderabad, India.
- Tejaswi, N.L. (2012). Identification of molecular markers for seedling vigour traits in rice. *M. Sc.* Thesis, Acharya N. G. Ranga Agric. Univ. Hyderabad, India.
- Uzair, M., Patil S.B., Zhang H., Kumar A., Mkumbwa H., Zafar S.A., Chun Y., Fang J., Zhao J., Khan M.R. and Yuan S. (2022). Screening direct-seeding-related traits by using an improved mesocotyl elongation assay and association between seedling and maturity traits in rice. *Agron.*, **12(4)**, e975.
- Wang, Z., Wang J., Zhou R., Wang J. and Zhang H. (2011). Identification of quantitative trait loci for cold tolerance during germination and seedling stages in rice (*Oryza* sativa L.). Euphytica, **181**, 405-413.
- Yamane, K., Garcia R., Imayoshi K., Mabesa-Telosa R.C., Banayo N.P.M., Vergara G., Yamauchi A., Sta. Cruz P. and Kato Y. (2018). Seed vigour contributes to yield improvement in dry direct seeded rainfed lowland rice. *Ann. Appl. Bio.*, **172**, 100-110.
- Zhang, A., Liu C., Chen G, Hong K., Gao Y., Tian P., Peng Y., Zhang B., Ruan B., Jiang H., Guo L., Qian Q. and Gao Z. (2017). Genetic analysis of rice seedling vigor and fine mapping of major QTL qSSL1b for seedling shoot length. *Breed. Sci.*, 67, 307-315.
- Zhang, Z.H., Qu X.S., Chen L.H. and Zhu Y.G. (2005). Comparison of QTL controlling seedling vigor under different temperature conditions using recombinant inbred lines in rice (*Oryza sativa* L.). Ann. Bot., 95, 423-429.
- Zhao, D.L., Atlin G.N., Bastiaans L. and Spiertz J.H.J. (2006). Cultivar weed competitiveness in aerobic rice, Heritability, correlated traits and the potential for indirect selection in weed-free environments. *Crop Sci.*, 46, 372-380.